Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark.
نویسندگان
چکیده
Arabidopsis thaliana seedlings undergo photomorphogenic development even in darkness when the function of DE-ETIOLATED1 (DET1), a repressor of photomorphogenesis, is disrupted. However, the mechanism by which DET1 represses photomorphogenesis remains unclear. Our results indicate that DET1 directly interacts with a group of transcription factors known as the phytochrome-interacting factors (PIFs). Furthermore, our results suggest that DET1 positively regulates PIF protein levels primarily by stabilizing PIF proteins in the dark. Genetic analysis showed that each pif single mutant could enhance the det1-1 phenotype, and ectopic expression of each PIF in det1-1 partially suppressed the det1-1 phenotype, based on hypocotyl elongation and cotyledon opening angles observed in darkness. Genomic analysis also revealed that DET1 may modulate the expression of light-regulated genes to mediate photomorphogenesis partially through PIFs. The observed interaction and regulation between DET1 and PIFs not only reveal how DET1 represses photomorphogenesis, but also suggest a possible mechanism by which two groups of photomorphogenic repressors, CONSTITUTIVE PHOTOMORPHOGENESIS/DET/FUSCA and PIFs, work in concert to repress photomorphogenesis in darkness.
منابع مشابه
PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in Arabidopsis.
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a RING/WD40 repeat-containing ubiquitin E3 ligase that is conserved from plants to humans. COP1 forms complexes with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins, and these complexes degrade positively acting transcription factors in the dark to repress photomorphogenesis. Phytochrome-interacting basic helix-loop-helix transcription factors (PIFs) also rep...
متن کاملA Negative Feedback Loop between PHYTOCHROME INTERACTING FACTORs and HECATE Proteins Fine-Tunes Photomorphogenesis in Arabidopsis.
The phytochrome interacting factors (PIFs), a small group of basic helix-loop-helix transcription factors, repress photomorphogenesis both in the dark and light. Light signals perceived by the phytochrome family of photoreceptors induce rapid degradation of PIFs to promote photomorphogenesis. Here, we show that HECATE (HEC) proteins, another small group of HLH proteins, antagonistically regulat...
متن کاملDNA targets of the light regulated transcription factor PIF1 in Arabidopsis thaliana
The phytochrome-mediated regulation of photomorphogenesis under red and far-red light conditions involves both positive and negatively acting factors. The positively acting factors (e.g., HY5/HFR1/LAF1 and others) are degraded in the dark to prevent photomorphogenesis. By contrast, the negatively acting factors (e.g., PIFs) are degraded in response to light to promote photomorphogenesis. Here w...
متن کاملConstitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis.
Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of approximately 2500 genes in Arabidopsis thaliana. Here, we show th...
متن کاملBlue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.
Phytochrome interacting factors (PIFs) are nuclear basic helix-loop-helix (bHLH) transcription factors that negatively regulate photomorphogenesis both in the dark and in the light in Arabidopsis. The phytochrome (phy) family of photoreceptors induces the rapid phosphorylation and degradation of PIFs in response to both red and far-red light conditions to promote photomorphogenesis. Although ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 26 9 شماره
صفحات -
تاریخ انتشار 2014